103 research outputs found

    Double-stub loaded microstrip line reader for very high data density microwave encoders

    Get PDF
    Compact and high-data density microwave encoders useful for motion control and near-field chipless radio frequency identification (chipless-RFID) applications are proposed in this paper. The encoders are chains of metallic strips etched on a dielectric substrate. The reader consists of a microstrip line loaded with a pair of identical open-ended folded stubs located at different positions and oriented face-to-face by their extremes. By displacing the encoder over the extremes of the stubs, interstub coupling arises when a strip is located on top of the stubs, thereby generating two transmission zeros (rather than one) in the frequency response of the line. Thus, the presence of a strip on top of the face-to-face stubs produces a variation in the transmission coefficient of the line, which in turn can be detected by feeding the line with a harmonic signal, conveniently tuned. Encoder motion generates an amplitude modulated (AM) signal at the output port of the line with peaks, or dips, separated by a time distance dictated by the relative velocity between the reader and the encoder. Moreover, by making certain strips of the chain inoperative (e.g., by cutting them), it is possible to encode information that can be read as the absence (logic state "1") or presence (logic state "0") of peaks, or dips, at predefined positions in the output AM signal of the reader line. Since short strips suffice to generate interstub coupling, unprecedented data density per surface (DPS = 26.04 bit/cm 2 ) is obtained, as revealed by the implementation of 6.4 mm × 60 mm 100-bit encoder

    3D-printed all-dielectric electromagnetic encoders with synchronous reading for measuring displacements and velocities

    Get PDF
    Altres ajuts: ICREAIn this paper, 3D-printed electromagnetic (or microwave) encoders with synchronous reading based on permittivity contrast, and devoted to the measurement of displacements and velocities, are reported for the first time. The considered encoders are based on two chains of linearly shaped apertures made on a 3D-printed high-permittivity dielectric material. One such aperture chain contains the identification (ID) code, whereas the other chain provides the clock signal. Synchronous reading is necessary in order to determine the absolute position if the velocity between the encoder and the sensitive part of the reader is not constant. Such absolute position can be determined as long as the whole encoder is encoded with the so-called de Bruijn sequence. For encoder reading, a splitter/combiner structure with each branch loaded with a series gap and a slot resonator (each one tuned to a different frequency) is considered. Such a structure is able to detect the presence of the apertures when the encoder is displaced, at short distance, over the slots. Thus, by injecting two harmonic signals, conveniently tuned, at the input port of the splitter/combiner structure, two amplitude modulated (AM) signals are generated by tag motion at the output port of the sensitive part of the reader. One of the AM envelope functions provides the absolute position, whereas the other one provides the clock signal and the velocity of the encoder. These synchronous 3D-printed all-dielectric encoders based on permittivity contrast are a good alternative to microwave encoders based on metallic inclusions in those applications where low cost as well as major robustness against mechanical wearing and aging effects are the main concerns

    Strategies to enhance the data density in synchronous electromagnetic encoders

    Get PDF
    Altres ajuts: ICREA awardIn this paper, we report two different strategies to enhance the data density in electromagnetic encoders with synchronous reading. One approach uses a periodic chain of rectangular metallic patches (clock chain) that determines the encoder velocity, and dictates the instants of time for retrieving the bits of the identification (ID) code. However, contrary to previous electromagnetic encoders, the ID is inferred at both the rising and the falling edges of the clock signal generated by the clock chain. Moreover, the bits of information are not given by the presence or absence of metallic patches at their predefined positions in the so-called ID code chain. With this novel encoding system, a bit state corresponding to a certain instant of time is identical to the previous bit state, unless there is a change in the envelope function of the ID code signal, determined by the additional non-periodic ID code chain. The other encoding strategy utilizes a single chain of C-shaped resonators, and encoding is achieved by considering four different resonator dimensions, corresponding to four states and, hence, to two bits per resonator of the chain. Thus, with these two strategies, the data density is twice the one achievable in previously reported synchronous electromagnetic encoders

    Spectral signature barcodes based on S-shaped split ring resonators (S-SRRs)

    Get PDF
    In this paper, it is shown that S-shaped split ring resonators (S-SRRs) are useful particles for the implementation of spectral signature (i.e., a class of radiofrequency) barcodes based on coplanar waveguide (CPW) transmission lines loaded with such resonant elements. By virtue of its S shape, these resonators are electrically small. Hence S-SRRs are of interest for the miniaturization of the barcodes, since multiple resonators, each tuned at a different frequency, are used for encoding purposes. In particular, a 10-bit barcode occupying 1 GHz spectral bandwidth centered at 2.5 GHz, with dimensions of 9 cm2, is presented in this paper

    Interference sources in congested environments and its effects in UHF-RFID systems : a review

    Get PDF
    In scenario where radio frequency identification (RFID) readers become increasingly common in hand held devices, the radios are prone to several interferences not only from external radio sources but also from the plurality of portable devices that may become more common over time. For that reason it is of interest to well understand how these radio interferences may be influencing a UHF-RFID transceiver working according to EPCglobal Class-1 Gen-2. In particular, in this paper, the combination of interference coming from the self-radio, from other radio systems, such as mobile phone or other RFID reader, is analyzed, and such effects are combined with the appearance of multiple tag antennas interfering each other. A method based on simulation using tag antenna design is presented to evaluate inter-tag interference in a variety of cases. For a better understanding analytic examples are presented to compute such interference interactions within the RFID system

    Chipless-RFID : a review and recent developments

    Get PDF
    In this paper, a review of the state-of-the-art chipless radiofrequency identification (RFID) technology is carried out. This recent technology may provide low cost tags as long as these tags are not equipped with application specific integrated circuits (ASICs). Nevertheless, chipless-RFID presents a series of technological challenges that have been addressed by different research groups in the last decade. One of these challenges is to increase the data storage capacity of tags, in order to be competitive with optical barcodes, or even with chip-based RFID tags. Thus, the main aim of this paper is to properly clarify the advantages and disadvantages of chipless-RFID technology. Moreover, since the coding information is an important aspect in such technology, the di_erent coding techniques, as well as the main figures of merit used to compare di_erent chipless-RFID tags, will be analyzed

    Microwave encoders for chipless RFID and angular velocity sensors based on S-shaped split ring resonators

    Get PDF
    In this paper, it is demonstrated that a chain of S-shaped split ring resonators (S-SRRs) etched on a dielectric substrate can modulate the amplitude of a carrier signal injected to a transmission line (a coplanar waveguide (CPW). To this end, the S-SRR chain must be transversally displaced above the CPW, in close proximity to it. By this means, the transmission coefficient of the line is modulated by the time-varying electromagnetic (inductive) coupling between the line and the S-SRRs of the chain, related to their relative motion. Based on this principle, two different applications can be envisaged: 1) angular velocity sensors and 2) near-field chipless radiofrequency identification (chipless-RFID) tags. In the former application, the S-SRR chain is circularly shaped and the S-SRRs are distributed uniformly along the perimeter of the rotor, at equidistant positions. By this means, the amplitude-modulated signal generated by rotor motion exhibits envelope peaks, whose distance is related to the angular velocity of the rotor. In the use of S-SRRs as microwave encoders for chipless RFID tags, not all the S-SRRs of the chain are present. Their presence or absence at the predefined (equidistant) positions is related to the logic state "1" or "0." Tag reading is sequential, and it is achieved through tag motion (at constant velocity) above the reader, a CPW transmission line fed by a carrier signal. The ID code is contained in the envelope function of the resulting amplitude modulated signal, which can be obtained by means of an envelope detector. With the proposed approach, a high number of pulses in angular velocity sensors can be achieved (with direct impact on angle resolution and sensitivity to changes in instantaneous rotation speed). Moreover, chipless-RFID tags with unprecedented number of bits can be obtained. The proposed angular velocity sensors can be useful in space environments, whereas the chipless-RFID systems based on the proposed tags are useful in applications where reading range can be sacrificed in favor of high data capacity (large number of bits), e.g., security and authentication

    Multistate multiresonator spectral signature barcodes implemented by means of S-shaped split ring resonators (S-SRR)

    Get PDF
    Spectral signature barcodes functional at the S frequency band are presented in this paper. The barcodes are implemented by loading a coplanar waveguide transmission line by means of multiple S-shaped split ring resonators (S-SRRs), each one tuned to a different frequency. The main particularity of this paper is the fact that more than two logic states (i.e., three or four, depending on the implementation) are assigned to each resonant element. By this means, the total number of bits of the barcode (for a given number of resonators) is increased, as compared with previous approaches based on two logic states per resonator. This multistate functionality is achieved by rotating the S-SRRs. Such rotation modulates the line-to-resonator coupling intensity, and consequently the notch depth at the S-SRR fundamental resonance. Therefore, by considering three or four fixed rotation angles (or orientations) between the line axis and the S-SRR (for the triand fourstate multiresonator barcodes, respectively), intermediate levels between the maximum and minimum attenuation are achieved. This multistate strategy only exploits a single frequency per resonant element (the fundamental one). Therefore, the data capacity per bandwidth are improved as compared with twostate-based barcodes or to multistate barcodes that use two frequencies per resonant element. As illustrative examples, two different four-state multiresonator barcodes with eight S-SRRs (providing 48 = 65.536 different codes, or 16 bits) and with nine S-SRRs (equivalent to 18 bits), occupying a spectral bandwidth of 1 GHz and less than 6.75 and 8.2 cm2, respectively, are designed, fabricated, and characterized

    High-density microwave encoders for motion control and near-field chipless-RFID

    Get PDF
    A novel microwave system for measuring linear displacements and velocities with sub-millimeter resolution and for the implementation of near-field chipless radiofrequency identification (chipless-RFID) systems with very high data capacity is presented. The system is based on a reader, consisting of a half-wavelength straight resonator coupled (through capacitor gaps) to a pair of access lines, and a microwave encoder, in relative motion to the reader and consisting of a linear chain of strips orthogonally oriented to the chain axis. By displacing the encoder over the half-wavelength resonator of the reader, with the encoder strips parallel oriented to the reader axis, the relative velocity and position between the encoder and the reader can be inferred. For that purpose, the reader is fed by a harmonic signal tuned to the resonance frequency that results when an encoder strip is perfectly aligned with the reader. The encoder motion amplitude modulates the feeding signal at the output port, and both the position and the velocity are measured from the peaks, or dips, of the resulting envelope function. Moreover, by making certain strips inoperative, the system can be used for coding purposes. Due to the small period of the encoder (0.6 mm), a high per-unit-length data density in these near-field chipless-RFID tags (i.e., 16.66 bits/cm) is achieved. To illustrate the functionality and potential of the approach, 100-bit chipless-RFID tags with various ID codes are implemented and rea

    Near-field chipless-RFID system with erasable/programmable 40-bit tags inkjet printed on paper substrates

    Get PDF
    In this letter, a chipless radio frequency identification (chipless-RFID) system with erasable/programmable 40-bit tags inkjet printed on paper substrates, where tag reading proceeds sequentially through near-field coupling, is presented for the first time. The tags consist of a linear chain of identical split ring resonators (SRRs) printed at predefined and equidistant positions on a paper substrate, and each resonant element provides a bit of information. Tag programming is achieved by cutting certain resonant elements, providing the logic state "0" to the corresponding bit. Conversely, tags can be erased (all bits set to "1") by short circuiting those previously cut resonant elements through inkjet. An important feature of the proposed system is the fact that tag reading is possible either with the SRR chain faced up or faced down (with regard to the reader). To this end, two pairs of header bits (resonators), with different sequences, have been added at the beginning and at the end of the tag identification chain. Moreover, tag data storage capacity (number of bits) is only limited by the space occupied by the linear chain. The implementation of tags on paper substrates demonstrates the potential of the proposed chipless-RFID system in secure paper applications, where the necessary proximity between the reader and the tag, inherent to near-field reading, is not an issu
    corecore